Skip to main navigation menu Skip to main content Skip to site footer

Remote sensing as a tool of biological conservation and grassland monitoring in mountain areas of Southeastern Kazakhstan

Abstract

Grassland degradation, as a worldwide phenomenon, has economic and bio-conservation aspects. Degradation of mountain grasslands severely impacts the ecosystem stability in fragile mountain environments and may destroy habitats of many endemic and endangered species. One of the significant triggers of mountain grassland degradation, along with possible consequences of climate change, is massive overgrazing. Overgrazing may seriously influence the ecosystem since it results in plant composition changes, soil erosion, water regime disturbances, etc., up to the disappearance of the entire ecosystem. It is crucial to have a reliable and cost-effective instrument for the ecosystem assessment of remote and hardly accessible mountain areas supported with accurate methods of the vegetation parameters estimation since the vegetation cover is first to react to externally driven disturbances. The current study was conducted in Dzungarian Alatau Mountains, inhabited by the rare and endemic anuran amphibian Ranodon sibiricus, Kessler, 1886. The project of the Conservation International Foundation (CIF/326/21) was aimed at the strategy of this species conservation. The current study emphasises estimating the overgrazing risks for the amphibian population. More than two hundred ground measurements were done within the Upper Koksu Forestry and adjacent areas to provide representative data on the vegetation parameters. We tested a series of spectral indices related to vegetation biophysical parameters. We found DWSI, GrNDVI, IRECI and NDI45 indices to provide the best correlations and reasonable accuracy for remote measurements of above-ground biomass, grasscover and unpalatable grass content. Sentinel-2 data with the red-edge bands, in most cases, provided better performance. Our study confirmed the use of a single criterion (like above-ground biomass) might result in a serious underestimation of grassland degradation. Data obtained from field survey and satellite information analysis allowed the evaluation of the optimal grazing load for the Upper Koksu Forestry and provided recommendations for the Action Plan on the conservation of Ranodon sibiricus.

Keywords

spectral index, above-ground biomass, overgrazing, ecosystem, monitoring

PDF

Author Biography

Dmitry V. Malakhov

 

 

Olga V. Dolbnya

Researcher

Department of GIS and Remote Sensing

 


References

  1. Alimayev, I.I. (2020). Recommendations on pasture use in beef cattle breeding. Almaty. 29 p. (available online: https://kazniizhik.kz/wp-content/uploads/2021/02/6-Rekomendatsii-po-ispolzovaniyu-pastbishh-v-myasnom-skotovods.-2020-g..pdf)
  2. Bannari, A., Asalhi, H., Teillet, P. (2002). Transformed Difference Vegetation Index (TDVI) for Vegetation Cover Mapping. In: Proceedings of the Geoscience and Remote Sensing Symposium, IGARSS '02, IEEE International, Volume 5.
  3. Baret, F., & Guyot, G. (1991). Potential and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 35, 161-173.
  4. Barrachina, M., Cristóbal, J., Tulla, A.F. (2015). Estimating above-ground biomass on mountain meadows and pastures through remote sensing. International Journal of Applied Earth Observation and Geoinformation, 38, 184-192.
  5. Bayle A., Carlson B.Z., Thierion V., Isenmann M., Choler P. (2019). Improved mapping of mountain shrublands using the Sentinel-2 red-edge band. Remote Sensing. 11, 2807, doi:10.3390/rs11232807
  6. Boegh, E., Soegaard, H., Broge, N., Hasager, C. B., Jensen, N. O., Schelde, K., & Thomsen, A. (2002). Airborne multi-spectral data for quantifying leaf area index, nitrogen concentration and photosynthetic efficiency in agriculture. Remote Sensing of Environment, 81(2-3), 179-193. doi:10.1016/S0034-4257(01)00342-X
  7. Brushko, Z.K. (1993). Dynamics of number, distribution of Siberian Salamander and its protection problems. Ékologiya, 3, 84-87.
  8. Bykov, B.A. Geobotany. Almaty. P. 53-59.
  9. Chen, J. (1996). Evaluation of Vegetation Indices and Modified Simple Ratio for Boreal Applications. Canadian Journal of Remote Sensing, 22, 229-242. doi:10.1080/07038992.1996.10855178
  10. Cheng X., Liu W., Zhou J., Wang Z., Zhang S., Liao S. (2022). Extraction of mountain grassland in Yunnan, China, from Sentinel-2 Data during the optimal phenological; period using feature optimisation. Agronomy. 12, 1948. https://doi.org/10.3390/agronomy12081948
  11. Clevers, JGPW (1989). The application of a weighted infrared-red vegetation index for estimating leaf area index by correcting for soil moisture. Remote Sensing of Environment, 29, 25-37.
  12. Crippen, R. (1990). Calculating the Vegetation Index Faster. Remote Sensing of Environment, 34, 71-73.
  13. Delegido, J., Verrelst, J., Alonso, L., Moreno, J. (2011). Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors, 11, 7063-7081. doi:10.1016/j.isprsjprs.2013.04.007
  14. Dolmen, D., Arnekleiv, J.V., Kubykin, R.A. & Mikutavichus, D. (1993). Habitats and threats to the red list species Ranodon sibiricus (Hynobiidae). Abstracts of the Second World Meeting of Herpetology (29 December 1993 - 6 January 1994, Adelaide, Australia), 74.
  15. Dolmen, D., Kubykin, R. A., Arneklein, J. V. (1999). Diel activity of Ranodon sibiricus (Amphibia: Hynobiidae) in relation to environment and threats. Asiatic Herpetological Research, 8, 29-37.
  16. Duniway, M.C., Karl, J.W., Schrader, S., Baquera, N., Herrick, J. E. (2012). Rangeland and pasture monitoring: an approach to interpretation of high-resolution imagery focused on observer calibration for repeatability. Environ Monit Assess, 184, 3789-3804. doi:10.1007/s10661-011-2224-2
  17. Eisfelder, C., Kuenzer, C., Dech, S. (2012). Derivation of biomass information for semi-arid areas using remote-sensing data. International Journal of Remote Sensing, 33(9), 2937-2984.
  18. Frampton, W.J., Dash, J., Watmough, G., Milton, E. J. (2013). Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 82, 83-92. doi:10.1016/j.isprsjprs.2013.04.007
  19. Galvão, L.S., Formaggio, A.R. & Tisot, D.A. (2005). Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data. Remote Sensing of Environment, 94(4), 523-534.
  20. Gitelson, A.A, Stark, R., Grits U., Rundquist, D., Kaufman, Y., Derry, D. (2002). Vegetation and Soil Lines in Visible Spectral Space: A Concept and Technique for Remote Estimation of Vegetation Fraction. International Journal of Remote Sensing, 23, 2537-2562.
  21. Gitelson, A., Y. Kaufman, and M. Merzylak. ( 1996). Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289-298.
  22. Gitelson, A., Merzlyak, M., (1998). Remote Sensing of Chlorophyll Concentration in Higher Plant Leaves. Adv. Space. Res., 22(5), 689-692. doi:10.1016/S0273-1177(97)01133-2
  23. Gvozdetsky, N.A., Mikhailov, N. I. (1978). Physical geography of USSR. Asian Part. 3rd Ed. Moscow, Mysl, 512.
  24. Huete, A. R. (1988). A soil vegetation adjusted index (SAVI). Remote Sensing of Environment, 25, 295-309. doi:10.1016/0034-4257(88)90106-X
  25. Huete, A., Justice, C., Van Leeuwen, W. (1999). MODIS vegetation index (MOD13). Algorithm theoretical basis document, 3(213). https://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf
  26. Iegorova, L.V., Gibbs, J.P., Mountrakis, G., Bastille-Rousseau, G., Paltsyn, M. Yu., Ayatkhan, A., Baylagasov, L.V., Robertus, Y.V., Chelyshev, A.V. (2019). Rangeland vegetation dynamics in the Altai mountain region of Mongolia, Russia, Kazakhstan and China: effects of climate, topography, and socio-political context for livestock herding practices. Environ. Res. Lett. 14 104017. doi:10.1088/1748-9326/ab1560
  27. Inam-ur-Rahim, Maselli, D. (2004). Improving Sustainable Grazing Management in Mountain Rangelands of the Hindu Kush–Himalaya. Mountain Research and Development, 24(2), 124-133. doi:10.1659/0276-4741(2004)024[0124:ISGMIM]2.0.CO;2
  28. Karnieli, A., Bayarjargal, Y., Bayasgalan, M., Mandakh, B., Dugarjav, Ch., Burgheimer, J., Khudulmur, S., Bazha S.N., Gunin P.D. (2013). Do vegetation indices provide a reliable indication of vegetation degradation? A case study in the Mongolian pastures. International Journal of Remote Sensing, 34(17), 6243-6262. doi:10.1080/01431161.2013.793865
  29. Kaufman, Y., Tanre, D. 1992. Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 261-270. doi:10.1109/36.134076
  30. Kerven, C., Steimann, B., Dear, C., Ashley, L. (2012). Exploring the Future of Pastoralism in the Central Asian Mountains: Exploring Dominant Attitudes Toward Development. Mountain Research and Development, 32(3RU). doi:10.1659/MRD-JOURNAL-D-12-00035.1.ru
  31. Kuang Q., Yuan Q., Han J., Leng R., Wang Y. Zhu K., Lin S., Ren P. (2020). A remote sensing monitoring method for alpine grassland desertification in the eastern Qinghai-Tibetan Plateau. J.Mt.Sci. 17(6), 1423-1437.
  32. Kuzmin, S.L., Kubykin, R.A., Thiesmeier, B., Greven, H. (1998). The distribution of the Semirechensk Salamander (Ranodon sibiricus): a historical perspective. Advances in Amphibian Research in the Former Soviet Union. Sofia - Moscow, Pensoft, 3, 1-20.
  33. Liu, H. Q., Huete, A. (1995). A feedback based modification of the NDVI to minimise canopy background and atmospheric noise. IEEE Trans. Geo. Remote. Sens., 33(2), 457-465. doi:10.1109/TGRS.1995.8746027
  34. Narbayeva, S.P., Brushko, Z.K. (1986). The number, distribution and size composition of the population of Semirechensk salamander in the headwaters of the River Borokhudzir. Rare Animals of Kazakhstan. Alma-Ata, Nauka, 181-186.
  35. Pinty, B., Verstraete, M. (1991). GEMI: a Non-Linear Index to Monitor Global Vegetation From Satellites. Vegetation, 101, 15-20.
  36. Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H. & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119-126.
  37. Richardson, A.J., Wiegand, C. L. (1977). Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43, 1541-1552.
  38. Rondeaux, G., Steven, M., Baret, F. (1996). Optimisation of Soil-Adjusted Vegetation Indices. Remote. Sens. Environ., 55(2), 95-107. doi:10.1016/0034-4257(95)00186-7
  39. Rouse, J. W. Jr., Haas, R. H., Schell, J. A. & Deering, D. W. (1974). Monitoring vegetation systems in s with ERTS. In: Third ERTS Symposium, NASA SP-351, US Government Printing Office, Washington, DC, 1, 309-317.
  40. Rubtsov, N.I. (1948). Vegetation of Dzungarian Alatau. Alma-Ata, 185.
  41. Thiesmeier, B., Greven, B. (1997). Neues ?ber Ranodon sibiricus in Kasachstan und im angrenzenden China. Elaphe, 2, 94-95.
  42. Todd, S. W., Hoffer, R. M., Milchunas, D. G. (1998). Biomass estimation on grazed and ungrazed rangelands using spectral indices. International Journal of Remote Sensing, 19(3), 427-438.
  43. Tucker, C. (1979). Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sensing of Environment, 8, 127-150.
  44. Vescovo, L., Wohlfahrt, G., Balzarolo, M., Pilloni, S., Sottocornola, M., Rodeghiero, M., Gianelle, D. (2012). New spectral vegetation indices based on the near-infrared shoulder wavelengths for remote detection of grassland phytomass. International Journal of Remote Sensing, 33(7), 2178-2195.
  45. Wang Z., Ma Y., Zhang Y., Shang J. (2022). Review of remote sensing applications in grassland monitoring. Remote Sensing, 14(12), 2903, https://doi.org/10.3390/rs14122903
  46. Wiesmair M., Fellhauer H., Magiera A., Otte A., Waldhardt R. (2016). Estimating Vegetation Cover from High-Resolution Satellite Data to Assess Grassland Degradation in the Georgian Caucasus. Mountain Research and Development. 36(1), 56-65. http://dx.doi.org/10.1659/MRD-JOURNAL-D-15-00064.1
  47. Yang, Z., Willis, P., & Mueller R. (2008). Impact of Band-Ratio Enhanced AWIFS Image to Crop Classification Accuracy. Proceedings of the Pecora 17 Remote Sensing Symposium, Denver, CO, 11.
  48. Yuan Y., Wen Q., Zhao X., Liu S., Zhu K., Hu B. (2022). Identifying grassland distribution in a mountainous region in Southwest China using multi-source remote sensing images. Remote Sensing. 14, 1472, https://doi.org/10.3390/rs14061472
  49. Zhang, N., Hong, Y., Qin, Q., Liu, L. (2013). VSDI: a visible and shortwave infrared drought index for monitoring soil and vegetation moisture based on optical remote sensing. International Journal of Remote Sensing, 34(13), 4585-4609. doi:10.1080/01431161.2013.779046