Skip to main navigation menu Skip to main content Skip to site footer

Evaluation of Land Cover Dynamics and Landscape Fragmentation in Ijebu Ode, Nigeria

Abstract

Landscape fragmentation has been found to be a major consequence of urbanization and of land use/cover (LULC) changes. Thus, this study analyzed the spatiotemporal land use/land cover changes of Ijebu Ode, Nigeria between 1986 and 2021. This is with a view to assessing the pattern of landscape fragmentation in the study area. The study used data obtained through Global Positioning System (GPS) receiver and satellite imageries (Landsat 5 MSS/TM, 1986; Landsat 7 ETM+, 2000 and 2014; and Landsat 8 OLI/TIR, 2021). Data were analyzed using spatial landscape metrics. Results indicated that Ijebu Ode has witnessed dramatic increase of built-up areas between 1986 and 2000 by 11.03%, 2000 to 2014 (65.24%), and 2014 to 2021 by 131.25%. Expansion of the built-up area was aided by reductions in bare land (1986 to 2000, 15.78%; 2014 to 2021, 98.27%), and the cultivated area by 47.74% between 1986 and 2014. Landscape metrics were estimated over the four epochs of study. Results revealed that most of the metrics suggest similar trends over the entire periods of study. However, Largest Patch Index (LPI), Landscape Shape Index (LSI) and Normalized Landscape Shape Index (NLSI) were useful in capturing the spatio-temporal variations in landscape transformation. Also, Class Area (CA) was useful to show the degree of land cover changes. The study concluded that location of spatial structures influenced the landscape patterns influence and urbanization processes in the study area. Hence, the study recommended for regular monitoring of the expansion of the built-up area to check the imminent urban sprawl in the study area.

Keywords

land use, landscape fragmentation, spatial metrics, landscape pattern, Ijebu Ode

PDF

References

  1. Abbas, Z., Zhu, Z., & Zhao, Y. (2022). Spatiotemporal analysis of landscape pattern and structure in the Greater Bay Area, China. Earth Science Informatics, 1-16. https://doi.org/10.1007/s12145-022-00782-y
  2. Abimbola, A. (2011). Ife Origin Influence in the History of Ijebu People of South-Western Nigeria. Africa Research Review, 5(5), 13-24.
  3. Adejuwon, J.O., & Agundiminegha, Y.G. (2019). Impact of climate variability on cassava yield in the humid forest agro-ecological zone of Nigeria. Journal of Applied Sciences and Environmental Management, 23(5), 903-908.
  4. Ai, J., Yang, L., Liu, Y., Yu, K., & Liu, J. (2022). Dynamic Landscape Fragmentation and the Driving Forces on Haitan Island, China. Land, 11(1), 136. Doi.org/10.3390/land11010136.
  5. Akin, A., & Erdogan, M.A. (2020). Analysing temporal and spatial urban sprawl change of Bursa city using landscape metrics and remote sensing. Modeling Earth Systems and Environment, 6(3), 1331-1343.
  6. Anderson, J.R., Hardy, E.E., Roach, J.T., & Witmer, R.E. (1976). A Land Use and Land Cover Classification System for Use with Remote Sensor Data. U. S. Geological Survey, Professional Paper, 964, Reston, VA.
  7. Bakare, H.O., Oke, M.O., Bankole, M.O., & Komolafe, B.O. (2012). Spatio-temporal analysis of wetland ecology of Ijebu-Ode, Southwest Nigeria. COLERM Proceedings, 1, 207-215.
  8. Bertram, C., Goebel, J., Krekel, C., & Rehdanz, K. (2021). Urban land use fragmentation and human wellbeing. Land Economics 122019-0175R1.
  9. Calderon-Loor, M., Hadjikakou, M., & Bryan, B.A. (2021). High-resolution wall-to-wall land-cover mapping and land change assessment for Australia from 1985 to 2015. Remote Sensing of Environment, 252, 112-148.
  10. Carsjens, G.J., & van Lier, H.N. (2002). Fragmentation and land use planning: an introduction. Landscape and Urban Planning, 58, 79-82.
  11. Cheng, Y., Jia, Z., Lai, H., Yang, J., Kasabov, N.K. (2020). A fast sand-dust image enhancement algorithm by blue channel compensation and guided image filtering. IEEE Access, 8, 196690-196699. DOI: 10.1109/ACCESS.2020.3034151
  12. Ciaian, P., Guri, F., Rajcaniova, M., Drabik, D., & y Paloma, S.G. (2018). Land fragmentation and production diversification: A case study from rural Albania. Land use policy, 76, 589-599
  13. Congalton, R.G., & Green, K. (2019). Assessing the accuracy of remotely sensed data: principles and practices. Boca Raton: CRC Publishers
  14. Das, S., & Angadi, D.P. (2021). Assessment of urban sprawl using landscape metrics and Shannon’s entropy model approach in town level of Barrackpore sub-divisional region, India. Modeling Earth Systems and Environment, 7(2), 1071-1095.
  15. Dasgupta, A., Kumar, U., & Ramachandra, T.V. (2009). Urban Landscape analysis through spatial metrics. In Proceedings of International Conference on Infrastructure, Sustainable Transportation and Urban Planning, (CISTUP@CiSTUP), Indian Institute of Science, Bangalore, India (pp. 18-20)
  16. Dewan, A.M., Yamaguchi, Y., & Rahman, Z. (2012). Dynamics of land use/cover changes and the analysis of landscape fragmentation in Dhaka Metropolitan, Bangladesh. GeoJournal, 77(3), 315-330.
  17. Ezekiela, A.A., Ajibefunb, I.A., Akinnirana, T.N., & Ogunwole-Olapadea, F. (2016). Economic Value of Crop Productivity Biodiversity in Ijebu Ode Agricultural Zone of Ogun State, Nigeria. Sociology, 6(2), 111-123.
  18. Fahm, A.O. (2015). Ijebu Ode’s Ojude Oba Festival: Cultural and Spiritual Significance. SAGE Open, 5(1), 1-11. DOI: 10.1177/2158244015574640
  19. Faruque, M.J., Vekerdy, Z., Hasan, M.Y., Islam, K.Z., Young, B., Ahmed, M.T., Monir, M.U., Shovon, S.M., Kakon, J.F., & Kundu, P. (2022). Monitoring of land use and land cover changes by using remote sensing and GIS techniques at human-induced mangrove forests areas in Bangladesh. Remote Sensing Applications: Society and Environment, 25, 100699.
  20. Fayemi, J.A. (2020). Effects of Climate Change and Global Warming on Sustainable Development and Socio-Economic Life of Ijebu-Ode Indigenes of Nigeria. Journal of Sustainable Development in Africa, 22(1), 95-103
  21. Gutman, G., Byrnes, R.A., Masek, J., Covington, S., Justice, C., Franks, S., & Headley, R. (2008). Towards monitoring land-cover and land-use changes at a global scale: The Global Land Survey 2005. Photogrammetric Engineering and Remote Sensing, 74(1), 6-10.
  22. Hartvigsen, M. (2014). Land reform and land fragmentation in Central and Eastern Europe. Land use policy, 36, 330-341.
  23. Hesselbarth, M.H., Sciaini, M., With, K.A., Wiegand, K., & Nowosad, J. (2019). Landscape metrics: An open-source R tool to calculate landscape metrics. Ecography, 42(10), 1648-1657.
  24. Irwin, E.G., & Bockstael, N.E. (2007). The evolution of urban sprawl: Evidence of spatial heterogeneity and increasing land fragmentation. Proceedings of the National Academy of Sciences, 104(52), 20672-20677.
  25. Jia, Y., Tang, L., Xu, M., & Yang, X. (2019). Landscape pattern indices for evaluating urban spatial morphology–A case study of Chinese cities. Ecological indicators, 99, 27-37
  26. Kaminski, A., Bauer, D.M., Bell, K.P., Loftin, C S., & Nelson, E.J. (2021). Using landscape metrics to characterize towns along an urban-rural gradient. Landscape Ecology, 36(10), 2937-2956.
  27. Khwarahm, N. R. (2021). Spatial modeling of land use and land cover change in Sulaimani, Iraq, using multitemporal satellite data. Environmental Monitoring and Assessment, 193(3), 1-18.
  28. Khwarahm, N. R., Najmaddin, P. M., Ararat, K., & Qader, S. (2021). Past and future prediction of land cover land use change based on earth observation data by the CA–Markov model: a case study from Duhok governorate, Iraq. Arabian Journal of Geosciences, 14(15), 1-14.
  29. Leta, M. K., Demissie, T. A., & Tränckner, J. (2021). Modeling and prediction of land use land cover change dynamics based on land change modeler (Lcm) in nashe watershed, upper blue nile basin, Ethiopia. Sustainability, 13(7), 3740.
  30. Li, H., & Wu, J. (2004). Use and misuse of landscape indices. Landscape Ecology, 19, 389–399.
  31. Lillesand, T., Kiefer, R.W., & Chipman, J. (2015). Remote sensing and image interpretation. John Wiley & Sons.
  32. Liping, C., Yujun, S., & Saeed, S. (2018). Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques – A case study of a hilly area, Jiangle, China. PloS one, 13(7), e0200493.
  33. Lyons, M.B., Keith, D.A., Phinn, S.R., Mason, T.J., Elith, J. (2018). A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sensing of Environment, 208, 145-153.
  34. Mabogunje, A.L., & Kate, R.W. (2004). Sustainable Development in Ijebu Ode, Nigeria: The role of social capital, participation and science and technology. CCID Working Paper Series No. 102. Cambridge MA: Sustainable Development Program, Centre for International Development.
  35. Mantey, S., & Aduah, M.S. (2021). Comparison of Object-Based Classifiers and Traditional Pixel-Based Classification Techniques Using Landsat Imagery. Ghana Journal of Technology, 5(2), 60-69.
  36. Maselli, L., & Negri, R.G. (2021). Urban structure type mapping method using spatial metrics and remote sensing imagery classification. Earth Sci Inform 14:2357–2372. https://doi.org/10.1007/s12145-021-00639-w
  37. McGarigal, K., & Marks, B.J. (1995). FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. Gen. Tech. Rep. PNW-GTR-351. US Department of Agriculture, Forest Service, Pacific Northwest Research Station, 122 pp. DOI:10.2737/PNW-GTR-351
  38. Mishra, V.N., Rai, P.K., Kumar, P., & Prasad, R. (2016). Evaluation of land use/land cover classification accuracy using multi-resolution remote sensing images. Forum Geografic, 15(1), 45-53. http://dx.doi.org/10.5775/fg.2016.137.i.
  39. Mishra, V. N., Rai, P. K., Prasad, R., Punia, M., & Nistor, M. M. (2018). Prediction of spatio-temporal land use/land cover dynamics in rapidly developing Varanasi district of Uttar Pradesh, India, using geospatial approach: a comparison of hybrid models. Applied Geomatics, 10(3), 257-276.
  40. Mohammadreza, E.L.M.., Rouhani, A., & Keshavarz, E. (2022). Landscape Metrics for Urbanization and Urban Land-Use Change Monitoring from Remote Sensing Images: A case of Shiraz Metropolis, Iran. International Journal of Earth Sciences Knowledge and Applications, 4(1), 43-50.
  41. National Population Commission of Nigeria (2006). 2006 National Population Census Results.
  42. Olayiwola, A.M., & Fakayode, O. (2019). Landscape Metrics Analysis of Landuse Patterns and Changes in Suburban Local Government Areas of Ibadan, Nigeria. South African Journal of Geomatics, 8(2), 209-220.
  43. Oluwatobi, A., & Oluwakemi, O. (2016). Analysis of Trend and Variability of Atmospheric Temperature in Ijebu-Ode, Southwest Nigeria. African Journal of Geo-Science Research, 4(2), 09-12.
  44. Onanuga, M.Y., Eludoyin, A.O., & Ofoezie, I.E. (2022). Urbanization and its effects on land and water resources in Ijebuland, southwestern Nigeria. Environment, Development and Sustainability, 24(1), 592-616.
  45. Ramachandra, T.V., & Aithal, B.H. (2013). Understanding urban sprawl dynamics of Gulbarga-Tier II city in Karnataka through spatio-temporal data and spatial metrics. International Journal of Geomatics and Geosciences, 3(3), 388-404
  46. Rawat, J.S., & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18(1), 77-84.
  47. Richards J.A. (2022). Supervised Classification Techniques. In: Remote Sensing Digital Image Analysis. Berlin Heidelberg: Springer, Cham (263-367). Https://doi.org/10.1007/978-3-030-82327-6_8.
  48. Simons, S. (1988). Land fragmentation in developing countries: the optimal choice and policy implications. Explorations in Economic History, 25, 254-262.
  49. Singh, S.K., Pandey, A.C., & Singh, D. (2014). Land use fragmentation analysis using remote sensing and Fragstats. In Remote sensing applications in environmental research (pp. 151-176). Springer, Cham.
  50. Singh, S.K., Srivastava, P.K., Szabó, S., Petropoulos, G.P., Gupta, M., & Islam, T. (2017). Landscape transform and spatial metrics for mapping spatiotemporal land cover dynamics using Earth Observation data-sets. Geocarto International, 32(2), 113-127.
  51. Tariq, A., Shu, H., Siddiqui, S., Imran, M., & Farhan, M. (2021). Monitoring Land Use and Land Cover Changes Using Geospatial Techniques, A Case Study of Fateh Jang, Attock, Pakistan. Geography, Environment, Sustainability, 14(1), 41-52.
  52. Wang, J., Bretz, M., Dewan, M. A. A., & Delavar, M. A. (2022). Machine learning in modelling land-use and land cover- change (LULCC): Current status, challenges and prospects. Science of The Total Environment, 153559.