Skip to main navigation menu Skip to main content Skip to site footer

A GIS-based AHP Method for Groundwater Potential Zone Assessment: A Review


Scientific and academic researches and studies trying to present a multi-range of techniques and methods focusing on groundwater pollution, potentials, assessment, and prediction, Groundwater is the most important resource of fresh water now and many researchers trying to cover all about this resource to get sustainable development. This review aims to create an overview of groundwater analysis and forecasting methods. The study is based on the need to select and group research papers into best-defined methodological categories. The article gives an overview of recent advancements in groundwater potential zone analysis approaches, as well as ongoing research objectives based on that overview. This review has overviewed papers and researches been published last decade 2010 -2020 have been done depending on the data sources from the global online database, which could obtain many papers and research studying the groundwater potential zones and other aspects related to groundwater.  The aim of reviewing multiple types of research and papers on determining groundwater potential zones by applying the best techniques and selecting the most suitable factors that affect groundwater potential zones.


Groundwater-potential zone, Multi-criteria decision making, GIS, Analytic hierarchy process (AHP)



  1. Okello, C.; Tomasello, B.; Greggio, N.; Wambiji, N.; Antonellini, M. (2015). Impact of population growth and climate change on the freshwater resources of Lamu Island, Kenya. Water 2015, 7, 1264–1290. [CrossRef]
  2. Diamantino, C.; Henriques, M.J.; Oliveira, M.M.; Ferreira, J.P.L. (2007). Methodologies for pollution risk assessment of water resources systems. IAHS Publ., 310, 298.
  3. Alessa, L.; Kliskey, A.; Lammers, R.; Arp, C.; White, D.; Hinzman, L.; Busey, R. (2008). The arctic water resource vulnerability index: An integrated assessment tool for community resilience and vulnerability with respect to freshwater. Environ. Manag., 42, 523.
  4. Danielopol, D.L.; Griebler, C.; Gunatilaka, A.; Notenboom, J. (2003). Present state and future prospects for groundwater ecosystems. Environ. Conserv., 30, 104–130.
  5. De Stefano, L.; Lopez-Gunn, E. (2012). Unauthorized groundwater use: Institutional, social and ethical considerations. Water Policy, [6] 14, 147–160.
  6. Lee, S.; Lee, C.W. (2015). Application of decision-tree model to groundwater productivity-potential mapping. Sustainability, 7, 13416–13432.
  7. Helena, B.; Pardo, R.; Vega, M.; Barrado, E.; Fernandez, J.M.; Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res., 34, 807–816.
  8. Pourtaghi, Z.S.; Pourghasemi, H.R. (2014). GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeol. J., 22, 643–662.
  9. Thapa, R.; Gupta, S.; Guin, S.; Kaur, H. (2017). Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: A case study from Birbhum district, West Bengal. Appl. Water Sci., 7, 4117–4131.
  10. Machiwal, D.; Jha, M.K.; Mal, B.C. (2011). Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water Resour. Manag., 25, 1359–1386.
  11. Yin, H.; Shi, Y.; Niu, H.; Xie, D.; Wei, J.; Lefticariu, L.; Xu, S. (2018). A GIS-based model of potential groundwater yield zonation for a sandstone aquifer in the Juye Coalfield, Shangdong, China. J. Hydrol., 557, 434–447.
  12. Elbeih, S.F. (2015). An overview of integrated remote sensing and GIS for groundwater mapping in Egypt. Ain Shams Eng. J., 6, 1–15.
  13. Senanayake, I.P.; Dissanayake, D.M.D.O.K.; Mayadunna, B.B.; Weerasekera, W.L. (2016). An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geosci. Front., 7, 115–124.
  14. Saaty, T.L. The Analytic Hierarchy Process; McGrawHill: New York, NY, USA, 1980
  15. Saaty, T.L. (2000). Fundamentals of Decision Making and Priority Theory; RWS Publications: Pittsburgh, PA, USA.
  16. Guo, J.-Y.; Zhang, Z.-B.; Sun, Q.-Y. (2008). Applications of AHP method in safety science. J. Saf. Sci. Technol., 2, 69–73.
  17. Wang, Y.; Li, Z.; Tang, Z.; Zeng, G. (2011). A GIS-based spatial multi-criteria approach for flood risk assessment in the Dongting Lake Region, Hunan, Central China. Water Resour. Manag., 25, 3465–3484.
  18. Tang, Z.; Zhang, H.; Yi, S.; Xiao, Y. (2018). Assessment of flood susceptible areas using spatially explicit, probabilistic multi-criteria decision analysis. J. Hydrol., 558, 144–158.
  19. Chen, H.; Wood, M.D.; Linstead, C.; Maltby, E. (2011). Uncertainty analysis in a GIS-based multi-criteria analysis tool for river catchment management. Environ. Model. Softw., 26, 395–405.
  20. Nair, N.C.; Srinivas, Y.; Magesh, N.S.; Kaliraj, S. (2019). Assessment of groundwater potential zones in Chittar basin, Southern India using GIS based AHP technique. Remote Sens. Appl. Soc. Environ., 15, 100248.
  21. Abrams, W.; Ghoneim, E.; Shew, R.; LaMaskin, T.; Al-Bloushi, K.; Hussein, S.; AbuBakr, M.; Al-Mulla, E.; Al-Awar, M.; El-Baz, F. (2018). Delineation of groundwater potential (GWP) in the northern United Arab Emirates and Oman using geospatial technologies in conjunction with Simple Additive Weight (SAW), Analytical Hierarchy Process (AHP), and Probabilistic Frequency Ratio (PFR) techniques. J. Arid Environ., 157, 77–96.
  22. Patra, S.; Mishra, P.; Mahapatra, S.C. (2018). Delineation of groundwater potential zone for sustainable development: A case study from Ganga Alluvial Plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process. J. Clean. Prod., 172, 2485–2502.
  23. Gdoura, K.; Anane, M.; Jellali, S. (2015). Geospatial and AHP-multicriteria analyses to locate and rank suitable sites for groundwater recharge with reclaimed water. Resour. Conserv. Recycl., 104, 19–30.
  24. Gupta, M.; Srivastava, P.K. (2010). Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India. Water Int., 35, 233–245.
  25. Rahmati, O.; Samani, A.N.; Mahdavi, M.; Pourghasemi, H.R.; Zeinivand, H. (2015). Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab. J. Geosci., 8, 7059–7071.
  26. Pinto, D.; Shrestha, S.; Babel, M.S.; Ninsawat, S. (2017). Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique. Appl. Water Sci., 7, 503–519.
  27. Murthy, K.S.R. (2000). Ground water potential in a semi-arid region of Andhra Pradesh—A geographical information system approach. Int. J. Remote Sens., 21, 1867–1884.
  28. Ibrahim-Bathis, K.; Ahmed, S.A. (2016). Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, India. Egypt. J. Remote Sens. Space Sci., 19, 223–234.
  29. Riley, S. J. (1999). Index that quantifes topographic heterogeneity. Internet. J. Sci. 5, 23–27.
  30. Receb Celik, (2019). Evaluation of Groundwater Potential by GIS-Based Multicriteria Decision Making as a Spatial Prediction Tool: Case Study in the Tigris RiverBatman-Hasankeyf Sub-Basin, Turkey, Journal of Water.
  31. Yeh, H.-F., Cheng, Y.-S., Lin, H.-I. & Lee, C.-H. (2016). Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustain. Environ. Res. 26, 33–43.
  32. Kumar, P., Herath, S., Avtar, R. & Takeuchi, K. (2016). Mapping of groundwater potential zones in Killinochi area, Sri Lanka, using GIS and remote sensing techniques. Sustain. Water Resour. Manag. 2, 419–430.
  33. Rajaveni, S. P., Brindha, K. & Elango, L. (2017). Geological and geomorphological controls on groundwater occurrence in a hard rock region. Appl. Water Sci. 7, 1377–1389.
  34. Tapa, R., Gupta, S. & Reddy, D. V. (2017). Application of geospatial modelling technique in delineation of fuoride contamination zones within Dwarka Basin, Birbhum, India. Geosci. Front. 8, 1105–1114.
  35. Mandal, U.; Sahoo, S.; Munusamy, S.B.; Dhar, A.; Panda, S.N.; Kar, A.; Mishra, P.K. (2016). Delineation of groundwater potential zones of coastal groundwater basin using multi-criteria decision making technique. Water Resour. Manag., 30, 4293–4310.
  36. Singh, L. K., Jha, M. K. & Chowdary, V. M. (2018). Assessing the accuracy of GIS-based Multi-Criteria Decision Analysis approaches for mapping groundwater potential. Ecol. Indic. 91, 24–37.
  37. Ibrahim-Bathis, K. & Ahmed, S. A. (2016). Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, India. Egypt. J. Remote Sens. Sp. Sci. 19, 223–234.
  38. Greene, R.; Devillers, R.; Luther, J.E.; Eddy, B.G. (2011). GIS-based multiple-criteria decision analysis. Geogr. Compass, 5, 412–432.
  39. Punniyamoorty, M.; Ponnusamy, M.; Lakshmi, G. (2012). A combined application of structural equation modeling (SEM) and analytic hierarchy process (AHP) in supplier selection. Benchmarking Int. J., 19, 70–92.
  40. Kannan, V. (2010). Benchmarking the service quality of ocean container carriers using AHP. Benchmarking Int. J., 17, 637–656.
  41. Greene, R.; Devillers, R.; Luther, J.E.; Eddy, B.G. (2011). GIS-based multiple-criteria decision analysis. Geogr. Compass, 5, 412–432.
  42. Triantaphyllou, E.; Sanchez, A. (1997). A sensitivity analysis approach for some deterministic multi-criteria decision making methods. Decis. Sci., 28, 151–194.
  43. Ho, W.; Xu, X.; Dey, P.K. (2010). Multi-criteria decision making approaches for supplier valuation and selection: A literature review. Eur. J. Oper. Res., 202, 16–24.
  44. Ahmadi, H.; Kaya, O.A.; Babadagi, E.; Savas, T.; Pekkan, E. (2021). GIS-Based Groundwater Potentiality Mapping Using AHP and FR Models in Central Antalya, Turkey. Environ. Sci. Proc., 5, 11. IECG2020-08741.