Skip to main navigation menu Skip to main content Skip to site footer

The Effect of Drought Phenomenon on the Surface of Groundwater Aquifer in Qazvin Plain in Iran

Abstract

As one of the most catastrophic atmospheric events, drought affects various aspects of the environment. Groundwater resources are one the sectors that are influenced by long-term droughts and received insufficient attention compared to other aspects of the environment. Rainfall data collected by 23 metrological stations for 20 years (2005, 2010, 2015,2020) was used to investigate the drought event and its situation in Qazvin plain, the central plateau of Iran. Drought characteristics are evaluated using the 24-month standardized precipitation index (SPI). The results of SPI indicated that insufficient precipitation, excessive use of groundwater for irrigation, and utilization of uncontrolled wells caused a significant reduction in groundwater aquifers from 2015 to 2020. To assess the performance of the SPI, a five-year moving average of available precipitation data was calculated, and the result confirmed the outcomes of SPI. Appropriate geostatistical interpolation methods are used to generate maps of drought zoning. Based on the results of this investigation in the northeastern part of the study area, June and November had the highest and the lowest rate of drought, respectively. The linear regression between the annual average of precipitation and the changes of groundwater aquifer level exposed a significant correlation of R2 = 0.4253. Furthermore, linear regression between 24-month SPI and groundwater aquifer level indicated a correlation of R2 = 0.614. Considering the results of this study, the reduction of groundwater aquifer levels in Qazvin plain from 2015 to 2015 exposed a significant negative difference compared to previous years (2005 to 2010).

Keywords

Drought, Groundwater aquifer, Geo-statistics, Qazvin plain, precipitation index

PDF

References

  1. Bloomfield, J. P., Marchant, B. P., & McKenzie, A. A., 2019. Changes in groundwater drought associated with anthropogenic warming, Hydrol. Earth Syst. Sci., 23, 1393–1408, https://doi.org/10.5194/hess-23.
  2. Cuthbert, M., O. et al., 2019. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572, 230–234.
  3. Calow, R., C., MacDonald, A. M., Nicol, A. L., & Robins, N. S., 2010. Ground Water Security and Drought in Africa: Linking Availability, Access, and Demand. Ground Water, 48(2), 246-256.
  4. Choi, M., J.M., Jacobs, M.C., Anderson & Bosch D. D., 2013. Evaluation of drought indices via remotely sensed data with hydrological variables. Journal of Hydrology, 476: 265-273.
  5. De graaf, I. E. M., Gleeson, T., van Beek, L. P. H., Sutanudjaja, E. H., & Bierkens, M. F. P., 2019. Environmental fow limits to global groundwater pumping. Nature 574, 90–94 (2019).
  6. Djamour, Y., P. Vernant, R. Bayer, H. R. Nankali, J. F. Ritz, J. Hinderer, Y. Hatam, et al., 2010. GPS and Gravity Constraints on Continental Deformation in the Alborz Mountain Range, Iran. Geophysical Journal International 183 (3): 1287–1301. doi:10.1111/j.1365-246X.2010.04811.x.
  7. Erler, A. R. et al., 2019. Evaluating climate change impacts on soil moisture and groundwater resources within a lake-affected region. Water Resour. Res. 55, 8142–8163 Famiglietti, J. S. et al. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 38 (L03403), 1–4 (2011).
  8. Falah, F., Ghorbani-Nejad, S., Rahmati, O., Daneshfar, M., & Zeinivand, H., 2016. Applicability of generalised additive model in groundwater potential modelling and comparision its performance by bivariate statistical methods, Geocarto International, 32(10), pp. 1069-1089.
  9. Fijani, E., Nadiri, A. A., Moghaddam, A. A., Tsai, F. T. C. & Dixon, B., 2013. Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh–Bonab plain aquifer, Iran. Journal of Hydrology 503, 89–100.
  10. Fadhil Al-Quraishi, A. M., Gaznayee, H. A. A., & Messina, J. P. (2021). Drought severity trend analysis based on the Landsat time-series dataset of 1998-2017 in the Iraqi Kurdistan Region. IOP Conference Series: Earth and Environmental Science, 779(1). https://doi.org/10.1088/1755-1315/779/1/012083
  11. Gaznayee, H. A. A., & Al-Quraishi, A. M. F. (2019). Analysis of agricultural drought’s severity and impacts in Erbil Province, the Iraqi Kurdistan region based on time series NDVI and TCI indices for 1998 through 2017. Journal of Advanced Research in Dynamical and Control Systems, 11(11), 287–297. https://doi.org/10.5373/JARDCS/V11I11/20193198
  12. Gaznayee, H., & Al-Quraishi, A. (2020). Identifying Drought Status in Duhok Governorate (Iraqi Kurdistan Region) from 1998 through 2012 using Landsat Time Series Dataset. Journal of Applied Science and Technology Trends, 1(1), 17–23. https://doi.org/10.38094/jastt1112
  13. Gleeson, T. et al., 2020. Illuminating water cycle modifcations and Earth system resilience in the Anthropocene. Water Resour. Res. 56, 1–24.
  14. Gourbesville, P., 2008. Challenges for integrated water resources management. Physics and Chemistry of the Earth, 33(5): 284-289.
  15. Gocic, M., Trajkovic, S., 2014. Spatiotemporal characteristics of drought in Serbia. J. Hydrol. 510, 110–123.
  16. Guttman, N.B., 1998. Comparing the Palmer Drought Index and the Standardized Precipitation 409 Index. American Water Resources Association, 34 (1), 113–121
  17. Gong, G., Mattevada, S., & Bryant, S., 2014. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Environ Res; 130(0):59-69.
  18. Hartmann, A., Gleeson, T., Wada, Y., & Wagener, T., 2017. Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity. Proc. Natl. Acad. Sci. 114, 2842–2847 (2017).
  19. Hellwig, J., 2018 Grundwasserdürren in Deutschland von 1970 bis, Korrespondenz Wasserwirtschaft, 12, 567–572, https://doi.org/10.3243/kwe2019.10.00.
  20. Stahl, K., 2021. Model outputs: Groundwater and baseflow stress tests in Germany, FreiDok, https://doi.org/10.6094/UNIFR/167379.
  21. Javadanian, H., & Ahmadi Darani, M., 2016. Irregular abstraction of groundwater resources and regional meeting: a case study of the city of Isfahan, Journal of Water and Wastewater Science and Engineering, 1(1), pp. 49-60.
  22. Joodaki, G., Wahr, J., & Swenson, S., 2014. Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resour. Res. 50, 2679–2692.
  23. Kumar, R., Musuuza, J. L., Van Loon, A. F., Teuling, A. J., Barthel, R., Ten Broek, J., Mai, J., Samaniego, L., & Attinger, S., 2016. Multiscale evaluation of the Standardized Precipitation Index as a groundwater drought indicator, Hydrol. Earth Syst. Sci., 20, 1117–1131, https://doi.org/10.5194/hess-20-1117-2016.
  24. Kahil, M. T., Dinar, A. & Albiac, J., 2015. Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions. J. Hydrol. 522, 95–109.
  25. Kourakos, G., Dahlke, H. E., & Harter, T., 2019. Increasing groundwater availability and seasonal base fow through agricultural managed aquifer recharge in an irrigated basin. Water Resour. Res. 55, 7464–7492.
  26. Lall, U., Josset, L., & Russo, T., 2020. A snapshot of the world’s groundwater challenges. Annu. Rev. Environ. Resour. https://doi.org/10. 1146/annurev-environ-102017-025800.
  27. Mosley, L.M., 2015. Drought impacts on the water quality of freshwater systems; review and integration. Earth-Science Reviews, 140, 203-214.
  28. Oliveira, P. T., & S. et al., 2017. Groundwater recharge decrease with increased vegetation density in the Brazilian cerrado. Ecohydrology 10, e1759.
  29. Peters, E., P.J.J.F. Torfs, H.A.J. Van Lanen and G. Bier. 2003. Propagation of drought through groundwater, a new approach using linear reservoir theory. Journal name, 17: 3023-3040.
  30. Qin, Y. et al., 2019. Flexibility and intensity of global water use. Nat. Sustain. 2, 515–523.
  31. Rezai, R., Maleki, A., Sarifi, M., & Ghavami, A., 2010. Evaluation of chemical pollution of groundwater resources in downstream areas of Sanandaj city landfill, Journal of Kurdistan University of Medical Sciences, Vo. 15, pp. 1989-1998.
  32. Rajasooriyar, L. D., Boelee, E., Prado, M. C., & Hiscock, K. M., 2013. Mapping the potential human health implications of groundwater pollution in southern Sri Lanka. Water Resources and Rural Development 1–2, 27–42.
  33. Rocha, A., Adeli, H., Paulo, L., and Costanzo, S., 2018. Trends and Advances in Information Systems and Technologies. Springer, New York, NY, Vol. 1.
  34. Suter, J. F., Rouhi Rad, M., Manning, D. T., Goemans, C., & Sanderson, M. R., 2019. Depletion, climate, and the incremental value of groundwater. Resour. Energy Econ. https:// doi. org/ 10. 1016/j. resen deco. 2019. 101143.
  35. Shakiba, A., Mirbagheri, B., & Kheiri, A., 2010. Drought and its impact on groundwater resources in the east Kermanshah province. Geography (Journal of Geographical Society of Iran), 8(25): 105-124 (in Persian).
  36. Stoelzle, M., Staudinger, M., Stahl, K., & Weiler, M., 2020. Stress testing as complement to climate scenarios: recharge scenarios to quantify streamflow drought sensitivity, P. IAHS, 383, 43–50.
  37. Smakhtin, V.U., & Hughes, D.A., 2004. Review, Automated estimation and analyses of drought 475 indices in South Asia. Working Paper 83, Drought Series paper 1, Colombo, Sri Lanka. 476 International Water Management Institute, 24pp.
  38. Taylor, R., G. et al., 2013. Ground water and climate change. Nat. Clim. Change 3, 322–329.
  39. Voss, K., A. et al., 2013. Groundwater depletion in the Middle East from GRACE with implications for Tran's boundary water management in the Tigris-Euphrates-Western Iran region: groundwater depletion in the Middle East from GRACE. Water Resour. Res. 49, 904–914.
  40. Van Lanen, H.A.J., & Peters, E., 2000. Definition, effects and assessment of groundwater droughts. In J. S. Vogt, Drought and Drought Mitigation in Europe (pp. 49-61). Dordrecht: Kluwer.
  41. Weider, K., & Boutt, D. F., 2010. Heterogeneous water table response to climate revealed by 60 years of ground water data, Geophys. Res. Lett., 37, L24405, https://doi.org/10.1029/2010GL045561.
  42. Wisser, D., Fekete, B. M., 2009. Vorosmarty, C. J. & Schumann, A. H. Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network- Hydrology (GTN-H). Hydrol. Earth Syst. Sci. Discuss. 6, 2679–2732.
  43. Wada, Y. et al., 2010. Global depletion of groundwater resources. Geophys. Res. Lett. 37, L20402.