Skip to main navigation menu Skip to main content Skip to site footer

Potential of Multispectral Satellite Data for Superficial Iron Oxide Detection in Sulaimaniyah, Iraqi Kurdistan Region

Abstract

This study primarily investigates the total (Fe) iron presence in Sulaimaniyah Governorate, the Iraqi Kurdistan Region (IKR), which has an abundance of iron mines. Spatial quantification and frequent monitoring of mineral existence in the soil are essential in the mining regions. To achieve this goal, a remote sensing technique was utilized to predict soil minerals, particularly iron existence in the study area using a multispectral satellite image, Landsat-7 Enhanced Thematic Mapper Plus (ETM+).  A robust methodology was perceived and developed from image processing to estimate and map iron oxides rich soils, and soil’s spectral indices were obtained after algorithms applied in processing on the bands of Landsat image. Soil samples were collected and analyzed in the laboratory to determine the chemical, physical, and mineralogical characteristics of soils. Correlation coefficients were carried out between soil properties and spectral band values retrieved from image analysis to examine the band potentials of Landsat. The statistical results showed that there was a significant relationship between the 3rd band of the ETM+ image and each of the total iron (R2 = 0.643), the free iron oxide (R2 = 0.659), and sand particles (R2 = 0.561). The predicted soil mineral maps were generated for the study area to visualize the study site's soil characterization and total iron spread. This study results could help primarily identify the spatial distribution of some soil properties in Sulaimaniyah, Iraq.

Keywords

Iron Oxide, Statistical analyses, Landsat ETM , Sulaimaniyah, Iraq

PDF

References

  1. A.L. Page et al., (ed.) Methods of soil analysis. Part 2. chemical and microbiological properties. Agron. Monogr. 9. ASA, Madison, WI.British Standards Institution BS 1377., (1975). Methods of test for soils for civil engineering purposes. 2 Park Street, London.
  2. Ahmed A. Madani. JKAU: Earth Sci., Vol. 20 No. 1, pp: 35-49 (2009 A.D./ 1430 A.H.). Utilization of Landsat ETM+ Data for Mapping Gossans and Iron Rich Zones Exposed at Bahrah Area, Western Arabian Shield, Saudi Arabia
  3. Al - Malak, S. D., (1986). Iron availability in some calcareous soils in northern Iraq. M.Sc. Thesis, Dept. of Soil Science, College of Agric. Salahadin University.
  4. Al -Aathami, Z.A., (1981). Studies of some effecting factors on iron Availability in alluvial and brown soil. M.Sc. Thesis. College of Agricultural. Mosel University. Iraq.
  5. Al-Azawy, K.M.N., (1988). Influence of nitrogen and iron application on
  6. Al-Bassam, K.S., and Tamar-Agha, M.Y., (1998). Genesis of the Hussainiyat ironstone deposit, Western Desert, Iraq. Mineralium Deposita 33: 266-282.
  7. Al-Jadoa, Haamoud, A.K., (1990). Iron, manganese, zinc, and copper in soil particles. Ph. D. Thesis, Dept. of Soil, College of Agric., Baghdad Univ., Iraq.
  8. Al-Obaidi, M.A.J., Khalil,N.F. and Sadullah M., (1994). Iron status in some soils of Northern Iraq. Jour. Agron. Sci. No.2.
  9. Alqasemi, A.S.; Hereher, M.E.; Al-Quraishi, A.M.F.; Saibi, H.; Aldahan, A.; Abuelgasim, A. (2020a). Retrieval of monthly maximum and minimum air temperature using MODIS aqua land surface temperature data over the United Arab Emirates, Geocarto International. doi:10.1080/10106049.2020.1837261.
  10. Alqasemi, A.S.; Hereher, M.E.; Kaplan, G.; Al-Quraishi, A.M.F.; Saibi, H (b). (2020b). Impact of COVID-19 lockdown upon the air quality and surface urban heat island intensity over the United Arab Emirates. Science of The Total Environment, 2020, 144330, https://doi.org/10.1016/j.scitotenv.2020.144330.
  11. Al-Quraishi, A.M.F.; Sadiq, H.A.; and Messina, J.P. (2019). Characterization and Modeling Surface Soil Physicochemical Properties Using Landsat Images: A Case Study in the Iraqi Kurdistan Region. The Munich remote Sensing Symposium (MRSS19), Munich, Germany 18-20 Sep. ISPRS Archives. 2019. doi: 10.5194/isprs-archives-XLII-2-W16-21-2019.
  12. Al-Quraishi, A.M.F.; Gaznayee, H.A.; Crespi, M. (2021). Drought Trend Analysis in Sulaimaniyah (Iraqi Kurdistan Region) for the Period 1998-2017 using Remote Sensing and GIS. Accepted for publication in the Journal of Arid Land. Springer.
  13. Atteia, O., Dubois, J. P., and Webster, R., (1994). Geostatistical Analysis of SoilContamination in the Swiss Jura, Environmental Pollution, Vol., 86, PP., 315-327
  14. Baumgardner M. F., Silva L. F., Biehl L. L. and Stoner E. R., (1985).Reflectance properties of soils. In: N. C. Brady Ed. Advances in Agronomy 38. Academic Press Inc. Orlando, Florida, pp.1-44
  15. Boccaletti, M. and Dainelli, P., (1982). RegmaticosystemNeogenico-Quaternary Mediterranean nell'area: esempio di deformazione plastic-collisionale rigid post. Memorial Society of Geology, Vol. 24.
  16. Bremner, J. M., and Mulvaney, C. S., (1982). Nitrogen - Total. P. 595-622. In A.L. Page et al., (ed.) Methods of soil analysis. Part 2. chemical and microbiological properties. Agron. Monogr. 9. ASA, Madison, WI
  17. Buondonno, C, Leone, A. P., Ortolani, F., Pagliuca, S., and Tedeschi, P.,(1987).Marginal area 'Fortorebeneventano'. Help diattito excursion. (National Council of Research Department: Irrigation Institute).
  18. Ciampalini, A., Garfagnoli, F., Antonielli, B. et al. Remote sensing techniques using Landsat ETM+ applied to the detection of iron ore deposits in Western Africa. Arab J Geosci 6, 4529–4546 (2013). https://doi.org/10.1007/s12517-012-0725-0
  19. Crist, E. P., Laurin, R., and Cicone, R. C., (1986). Vegetation and soils information contained in transformed Thematic Mapper data. In Proceedings of IGARSS' 86 Symposium, 1465-70. Ref. ESA SP-254. Paris: European Space Agency.
  20. Crist, E. P., (1985). A thematic mapper tasseled cap equivalent for reflectance factor data. Remote Sensing of Environment, vol. 17, pp.301-306
  21. Crist, E. P., and Cicone, R. C. (1984). A physically-based transformation of thematic mapper data the TM Tasseled Cap. IEEE Transactions on Geoscience and Remote Sensing, GE-22, pp. 256±263.
  22. Cudahy, T.,and Hewson, R. (2002). ASTER geological case histories: porphyry- skarnepithermal, iron oxide Cu-Au and Broken hill Pb-Zn-Ag. In: Annual General Meeting of the Geological Remote Sensing Group ‘ASTER Unveiled’, Burlington House, Piccadilly, London, UK.
  23. Diego Fernando Ducart, Adalene Moreira Silva, Catarina Labouré Bemfica Toledo and Luciano Mozer de Assis. Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil.Instituto de Geociências, Brazilian Journal of Geology.Braz. J. Geol. vol.46 no.3 São Paulo July/Sept. 2016.
  24. Dogan, H.M. and Kilic, O.M. (2013). Modeling and mapping some soil Surface properties of Central Kelkit Basin in Turkey by using Landsat-7 ETM+ images Turkey. Int. J. of Remote Sensing Vol.34, No.15, pp.5623–5640.
  25. Einax, J., and Soldt, U. (1995). Geostatistical Investigation of Polluted Soils, Fresenius’ Journal of Analytical Chemistry, Vol., 351, PP., 48-53.
  26. Fadhil, A.M. (2011). Drought mapping using Geoinformation technology for some sites in the Iraqi Kurdistan region. Int. J. Digit. Earth, 4, 239–257, doi:10.1080/17538947.2010.489971.
  27. Fadhil, A.M. (2013). Sand dunes monitoring using remote sensing and GIS techniques for some sites in Iraq. In: The 3rd International Conference on Photonics and Image in Agriculture Engineering (PIAGENG 2013). doi:10.1117/12.2019735.
  28. Galati, S. R. (2006). Geographic Information SystemsDemystified. 685.Canton Street. Norwood, MA 02062. Boston London
  29. Gardner, W.H. (1986). Water content. In A. Klute (ed.) Methods of soil Analysis.ASA and SSSA, Madison, WI, pp. 493 544.
  30. Goovaerts, P. (1999). Geostatistics in soil science: state- of- the -art and Perspectives, Geoderma, Vol., 89, pp., 1-45.
  31. Gopinathan P, Parthiban S, Magendran T, Al-Quraishi, A.M.F., Ashok K. Singh, Pradeep K. Singh, Mapping of ferric (Fe3+) and ferrous (Fe2+) iron oxides distribution using band ratio techniques with ASTER data and geochemistry of Kanjamalai and Godumalai, Tamil Nadu, south India.Remote Sensing Applications: Society and Environment,Volume 18,2020.
  32. growth, yield, and nutrient content of soil and corn plants. M.Sc. Thesis, Dept. of Soil, Coll. of Agri., Baghdad Univ., Iraqi.
  33. Hunt, G. R. (1980). Electromagnetic radiation: The communications link inremote sensing. In: Remote Sensing in Geology (Siegal, B. S. & Gillespite, A. R. Eds.). Wiley New York, pp. 5-45
  34. Kevin White, John Walden, Nick Drake, Frank Eckardt and effSettlell.1997. Mapping the iron oxide content of dune sands, Namib Sand Sea, Namibia, using landsat thematic mapper data.
  35. Krumbein, W. C., & Aberdeen, E., (1937). "The Sediments of Barataria Bay". Journal of Sedimentary Petrology 7 (1). Retrieved 11 May 2014.
  36. Kumar, M., Al-Quraishi, A.M.F., & Mondal, I. (2021). Glacier changes monitoring in Bhutan High Himalaya using remote sensing technology. Env. Eng. Res. 26(1). DOI: https://doi.org/10.4491/eer.2019.255
  37. Lindsay, W.L. (1979). Chemical equilibria in soils. Wiley Inter science. New York.
  38. Markus, J., & McBratney, A. B. (2001). A review of the contamination of soil with lead IISpatial distribution and risk assessment of soil lead, Environment International, Vol., 27, PP., 399–411.
  39. Mather, P.M., and Koch, M., (2011).Computer Processing of Remotely-Sensed Images. University of Nottingham and Center for Remote Sensing Boston University. Fourth Edition. John Wiley and Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK.
  40. Mather, P.M., & Koch, M. (2011). Computer Processing of Remotely-
  41. Mehra, O. P., & Jackson, M. L. (1953). Iron oxide removal from soils and Clays by a dithionite- citrate system buffered with sodium bicarbonate. Madison, Wisconsin.
  42. Mohamed, I.J. (1988). The chemical behavior of zinc, copper, and other selected nutrients elements in some Iraqi arid soils. Ph. Degree Thesis State. Univ. of Ghent, Belgium.
  43. Moore, I.D., Gessler, P.E., Nielsen, G.A., and Peterson, G.A., (1993). Soil attribute prediction using terrain analysis. Soil Science Society of America Journal 57(2), 443-452.
  44. Moorey, P.R.S., (1994). Ancient Mesopotamian Materials and Industries. Oxford.http://journals.cambridge.org/abstract_S0003581500047673
  45. Navas, A., & Machin, J. (2002). Spatial distribution of heavy metals and arsenic in soils of Aragon (northeast Spain): controlling factors and environmental implications. Applied Geochemistry, Vol., 17, PP., 961–973.
  46. Nelson, D. W., & Sommers, L.E. (1982). Total carbon, organic carbon, and organic matter. pp. 539 -580. In. Page, A. L., Miller, R., H., Keeney, DR. (eds.) Methods of soil analysis. Part 2. Chemical and microbiological properties. Agron. Monogr. 9. ASA, Madison, WI Oxford University Press, pp.277
  47. Rabeiy, R. E. (2010). Spatial modeling of heavy metal pollution of forest soils in a historical mining area using geostatistical methods and air dispersion modeling. Clausthal- zellerfeld/ Germany.reference and information center, technical paper 9. pp. 3-8. 5thedition.Remote Sensing of Environment Volume 62, Issue 1, October 1997, Pages 30-39.
  48. Rowell .D. L. (1996). Soil science: Methods and applications. Longman. Group UK Limited. pp. 50 – 51.
  49. Sensed Images. University of Nottingham and Center for Remote Sensing Boston University. Fourth Edition. John Wiley and Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK.
  50. Sposito, G. (1989). The Chemistry of Soils (Chaps. 8 and 9). New York:
  51. Stucki, J.W., Goodman, B.A., Schwertmann. (1988). Iron in Soils and Clay Minerals. NATO Science Series C:1988. U.Springer Netherlands. Series ISSN 1389-2185.
  52. Van Reeuwijk. L.R., (1995). Procedures for soil analysis. International soil
  53. ViscarraRossel, R. A., Bui, E. N., de Caritat, P., & McKenzie, N. J. (2010), mmappingiron oxides and the color of Australian soil using visible–near-infrared reflectance spectra, J. Geophys. Res., 115, F04031, DOI:10.1029/2009JF001645.
  54. Weismiller, R. A., Van Scoyoc G. E., Pazar S. E., Latz K., and Baumgardner M.F., (1985): Use of soil spectral properties for monitoring soil erosion. In:S.A. El-Swaify Ed., Proc. Conf. Soil Erosion and Conservation, Jan.16-22, Hawaii, pp.119-127
  55. Xiao, J. Peng, Y. Nakamura, T. Liu, B and Inouchi, Y. (2005).Holocene East Asian monsoonal precipitation pattern revealed by the grain-size distribution of core sediments of Daihai Lake in Inner Mongolia of north-central China, pp.3468-3750.
  56. Crespi, M., Kossobokov, V., Panza, G. F., & Peresan, A. (2020). Space-time precursory features within ground velocities and seismicity in North-Central Italy. Pure and Applied Geophysics, 177(1), 369-386.
  57. Mustafa, Y. (2020). Spatiotemporal Analysis of Vegetation Cover in Kurdistan Region-Iraq using MODIS Image Data. Journal of Applied Science and Technology Trends, 1(1), 01-07. doi: 10.38094/jastt119
  58. Veroustraete, F. (2017). Importance in Remote sensing of the spectral dependency of leaf assymetry. EGUGA, 19209.
  59. Wu, W., Muhaimeed, A.S., Al-Shafie, W.M., & Al-Quraishi, A.M.F. (2019). Using L-band radar data for soil salinity mapping — a case study in Central Iraq. Environ. Res. Commun. doi:10.1088/2515-7620/ab37f0.
  60. Yao, Y.; Qin, Q., Fadhil, A.M., Li, Y., Zhao, S., Liu, S., Sui, X., & Dong, H. (2011). Evaluation of EDI derived from the exponential evapotranspiration model for monitoring China’s surface drought. Environ. Earth Sci., 63, 425–436, doi:10.1007/s12665-011-0972-5.